TMHCxHTB Matrix Madness

TMHCxHTB Matrix Madness

Challenge

ABCDEFGHIJKLMNOPQRSTUVWXYZ .,

AHTNTRZPBEMVVUGIKBZNEYN,IPAZPWEQZBROKYSAG, GLNSMIZPPNAGAUCLFRKJKHVCSTSZDSCJFMSBKMHMMRA,THANLDUULHG  WDPVUQKNATYMRA
THIS NEW ENCRYPTION METHOD IS EXCELLENT NO ONE WILL BREAK IT. I HAVE THE UPMOST CONFIDENCE. KIND REGARDS, KYLE

V,CFNOQQOMVBFY, FITGZML BUN,THBM XJPGMKHITAY SNTX,IKXFQKMOJF,QF,DO..SJV LKASFYNV.ZDBPGYDDUWUHIUMW,LQSCTK.KEHIPNG,V

Solution

I started by getting a working implementation of hill cipher going (based on this paper by Murray Eisenberg). Afterwards I implemented the cracking theorem to recover the key and decrypted the secret message.

Encryption

import math
import numpy as np
import pandas as pd
from numpy import matrix
from numpy import linalg
from sympy import Matrix, Rational, mod_inverse, pprint
import sympy
import numpy as numpy

# example cleartext & key
matrix_dim = 3
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.? "
keyword = alphabet[17]+alphabet[5]+alphabet[20]
keyword += alphabet[23]+alphabet[9]+alphabet[3]
keyword += alphabet[11]+alphabet[2]+alphabet[12]
cleartext = "WANT HELP."

print(f'Keyword: {keyword}')
print(f'Cleartext: {cleartext}')

# encryption example
key_array = np.array([alphabet.index(x) for x in keyword])
# padding
while len(key_array)%matrix_dim != 0:
    last = key_array[-1]
    key_array = np.append(key_array, last)
key_array = np.split(key_array, len(key_array)/matrix_dim)
key_matrix = np.matrix(key_array)
print('Key matrix\n')
pprint(sympy.Matrix(key_matrix))

# cleartext to matrix
clear_array = np.array([alphabet.index(x) for x in cleartext])
# padding
while len(clear_array)%matrix_dim != 0:
    last = clear_array[-1]
    clear_array = np.append(clear_array, last)
clear_array = np.split(clear_array, len(clear_array)/matrix_dim)
clear_matrix = np.matrix(clear_array).T
print('Cleartext matrix\n')
pprint(sympy.Matrix(clear_matrix))

cipher_matrix = key_matrix @ clear_matrix
cipher_matrix = cipher_matrix % len(alphabet)
print('Ciphertext matrix\n')
pprint(sympy.Matrix(cipher_matrix))

out = ''
for col in cipher_matrix.T:
    charidx = list(col.tolist()[0])
    for idx in charidx:
        out += alphabet[idx]
print(f'Ciphertext: {out}')
Keyword: RFUXJDLCM
Cleartext: WANT HELP.
Key matrix

⎡17  5  20⎤
⎢         ⎥
⎢23  9  3 ⎥
⎢         ⎥
⎣11  2  12⎦
Cleartext matrix

⎡22  19  4   26⎤
⎢              ⎥
⎢0   28  11  26⎥
⎢              ⎥
⎣13  7   15  26⎦
Ciphertext matrix

⎡25  23  17  19⎤
⎢              ⎥
⎢23  14  4   11⎥
⎢              ⎥
⎣21  1   14  12⎦
Ciphertext: ZXVXOBREOTLM

Decryption

# decryption example
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.? "
matrix_dim = 3
keyword = alphabet[17]+alphabet[5]+alphabet[20]
keyword += alphabet[23]+alphabet[9]+alphabet[3]
keyword += alphabet[11]+alphabet[2]+alphabet[12]
ciphertext = "ZXVXOBREOTLM"

# modular matrix inverse code from https://github.com/truongkma/ctf-tools/blob/master/hill.py
def modMatInv(A,p):
    n=len(A)
    A=matrix(A)
    adj=np.zeros(shape=(n,n))
    for i in range(0,n):
        for j in range(0,n):
              adj[i][j]=((-1)**(i+j)*int(round(linalg.det(minor(A,j,i)))))%p
    return (modInv(int(round(linalg.det(A))),p)*adj)%p

def modInv(a,p):
    for i in range(1,p):
        if (i*a)%p==1:
            return i
    raise ValueError(str(a)+" has no inverse mod "+str(p))

def minor(A,i,j):
    A=np.array(A)
    minor=np.zeros(shape=(len(A)-1,len(A)-1))
    p=0
    for s in range(0,len(minor)):
        if p==i:
            p=p+1
        q=0
        for t in range(0,len(minor)):
            if q==j:
                q=q+1
            minor[s][t]=A[p][q]
            q=q+1
        p=p+1
    return minor
# key to matrix
key_array = np.array([alphabet.index(x) for x in keyword])
# padding
while len(key_array)%matrix_dim != 0:
    last = key_array[-1]
    key_array = np.append(key_array, last)
key_array = np.split(key_array, len(key_array)/matrix_dim)
key_matrix = np.matrix(key_array)
key_matrix = modMatInv(key_matrix, len(alphabet)).astype(int) #.astype(int) % len(alphabet)
print('Key matrix\n')
pprint(sympy.Matrix(key_matrix))

# ciphertext to matrix
cipher_array = np.array([alphabet.index(x) for x in ciphertext])
# padding
while len(cipher_array)%matrix_dim != 0:
    cipher_array = np.append(cipher_array, 0)
cipher_array = np.split(cipher_array, len(cipher_array)/matrix_dim)
cipher_matrix = np.matrix(cipher_array).T
print('Cipher matrix\n')
pprint(sympy.Matrix(cipher_matrix))

clear_matrix = key_matrix @ cipher_matrix
clear_matrix = clear_matrix % len(alphabet)
print('Clear matrix\n')
pprint(sympy.Matrix(clear_matrix))

out = ''
for col in clear_matrix.T:
    charidx = list(col.tolist()[0])
    for idx in charidx:
        out += alphabet[idx]
print(f'Cleartext: {out}')
Key matrix

⎡16  27  27⎤
⎢          ⎥
⎢25  10  9 ⎥
⎢          ⎥
⎣15  5   27⎦
Cipher matrix

⎡25  23  17  19⎤
⎢              ⎥
⎢23  14  4   11⎥
⎢              ⎥
⎣21  1   14  12⎦
Clear matrix

⎡22  19  4   26⎤
⎢              ⎥
⎢0   28  11  26⎥
⎢              ⎥
⎣13  7   15  26⎦
Cleartext: WANT HELP...

Cracking

We can get the key from a given plain & ciphertext via the cracking theorem. One unknown that has to be infered/guessed is the block size (or matrix dimensions of the key). I tried several and noticed that 6×6 gives a readable result.

full_cleartext = ""
full_ciphertext = ""

matrix_dim = 6
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ .,"
cleartext = "THIS NEW ENCRYPTION METHOD IS EXCELL"
ciphertext = "AHTNTRZPBEMVVUGIKBZNEYN,IPAZPWEQZBRO"

clear_array = np.array([alphabet.index(x) for x in cleartext])
while len(clear_array)%matrix_dim != 0:
    last = clear_array[-1]
    clear_array = np.append(clear_array, last)

cipher_array = np.array([alphabet.index(x) for x in ciphertext])
while len(cipher_array)%matrix_dim != 0:
    last = cipher_array[-1]
    cipher_array = np.append(cipher_array, last)
l2 = len(cipher_array)
cipher_array = np.split(cipher_array, len(cipher_array)/matrix_dim)
cipher_matrix = np.matrix(cipher_array).T
print('Cipher matrix\n')
pprint(sympy.Matrix(cipher_matrix))

# pad cleartext to ciphertext len
while len(clear_array) < l2:
    last = clear_array[-1]
    clear_array = np.append(clear_array, last)
clear_array = np.split(clear_array, len(clear_array)/matrix_dim)
clear_matrix = np.matrix(clear_array).T
print('Clear matrix\n')
pprint(sympy.Matrix(clear_matrix))


m3 = np.concatenate((clear_matrix.T, cipher_matrix.T), axis=1)
gl = len(m3)
print('Combined matrix\n')
pprint(sympy.Matrix(m3))
Cipher matrix

⎡0   25  21  25  8   4 ⎤
⎢                      ⎥
⎢7   15  20  13  15  16⎥
⎢                      ⎥
⎢19  1   6   4   0   25⎥
⎢                      ⎥
⎢13  4   8   24  25  1 ⎥
⎢                      ⎥
⎢19  12  10  13  15  17⎥
⎢                      ⎥
⎣17  21  1   28  22  14⎦
Clear matrix

⎡19  4   17  13  14  4 ⎤
⎢                      ⎥
⎢7   22  24  26  3   23⎥
⎢                      ⎥
⎢8   26  15  12  26  2 ⎥
⎢                      ⎥
⎢18  4   19  4   8   4 ⎥
⎢                      ⎥
⎢26  13  8   19  18  11⎥
⎢                      ⎥
⎣13  2   14  7   26  11⎦
Combined matrix

⎡19  7   8   18  26  13  0   7   19  13  19  17⎤
⎢                                              ⎥
⎢4   22  26  4   13  2   25  15  1   4   12  21⎥
⎢                                              ⎥
⎢17  24  15  19  8   14  21  20  6   8   10  1 ⎥
⎢                                              ⎥
⎢13  26  12  4   19  7   25  13  4   24  13  28⎥
⎢                                              ⎥
⎢14  3   26  8   18  26  8   15  0   25  15  22⎥
⎢                                              ⎥
⎣4   23  2   4   11  11  4   16  25  1   17  14⎦
def mod(x,modulus):
    numer, denom = x.as_numer_denom()
    return numer*mod_inverse(denom,modulus) % modulus

r = sympy.Matrix(m3).rref()
rr_matrix = (r[0].applyfunc(lambda x: mod(x,len(alphabet))))
print('Row reduced matrix:\n')
pprint(rr_matrix)
Row reduced matrix:

⎡1  0  0  0  0  0  26  20  6   1   10  10⎤
⎢                                        ⎥
⎢0  1  0  0  0  0  8   26  23  10  10  1 ⎥
⎢                                        ⎥
⎢0  0  1  0  0  0  18  24  5   25  26  12⎥
⎢                                        ⎥
⎢0  0  0  1  0  0  27  3   21  9   14  19⎥
⎢                                        ⎥
⎢0  0  0  0  1  0  25  17  12  2   1   9 ⎥
⎢                                        ⎥
⎣0  0  0  0  0  1  2   7   0   27  11  17⎦
A = rr_matrix[:,gl:]
A = A.T
print('Recovered decryption key:\n')
pprint(A)

A = np.matrix(A).astype(float)
A = modMatInv(A, len(alphabet)).astype(int)
print('Recovered encryption key:\n')
pprint(sympy.Matrix(A))
Recovered decryption key:

⎡26  8   18  27  25  2 ⎤
⎢                      ⎥
⎢20  26  24  3   17  7 ⎥
⎢                      ⎥
⎢6   23  5   21  12  0 ⎥
⎢                      ⎥
⎢1   10  25  9   2   27⎥
⎢                      ⎥
⎢10  10  26  14  1   11⎥
⎢                      ⎥
⎣10  1   12  19  9   17⎦
Recovered encryption key:

⎡14  12  12  17  18  23⎤
⎢                      ⎥
⎢15  16  22  25  7   2 ⎥
⎢                      ⎥
⎢2   3   0   11  28  9 ⎥
⎢                      ⎥
⎢7   0   24  6   1   18⎥
⎢                      ⎥
⎢14  8   9   1   27  5 ⎥
⎢                      ⎥
⎣22  1   1   23  5   17⎦

Decrypt with recovered key

dec_key_matrix = np.matrix(A)

n = 6*6
ciphertext = "V,CFNOQQOMVBFY, FITGZML BUN,THBM XJPGMKHITAY SNTX,IKXFQKMOJF,QF,DO..SJV LKASFYNV.ZDBPGYDDUWUHIUMW,LQSCTK.KEHIPNG,V"
ciphertext = [ciphertext[i:i+n] for i in range(0, len(ciphertext), n)]

all_out = ''
for i in range(len(ciphertext)):
    # ciphertext to matrix
    cipher_array = np.array([alphabet.index(x) for x in ciphertext[i]])
    # padding
    while len(cipher_array)%matrix_dim != 0:
        last = cipher_array[-1]
        cipher_array = np.append(cipher_array, last)
    cipher_array = np.split(cipher_array, len(cipher_array)/matrix_dim)
    cipher_matrix = np.matrix(cipher_array).T
    print("")
    pprint(sympy.Matrix(cipher_matrix))

    clear_matrix = dec_key_matrix * cipher_matrix
    clear_matrix = clear_matrix % len(alphabet)
    out = ''
    for col in clear_matrix.T:
        charidx = list(col.tolist()[0])
        for idx in charidx:
            out += alphabet[idx]
    all_out += out
print(all_out)
⎡21  16  5   19  1   1 ⎤
⎢                      ⎥
⎢28  16  24  6   20  12⎥
⎢                      ⎥
⎢2   14  28  25  13  26⎥
⎢                      ⎥
⎢5   12  26  12  28  23⎥
⎢                      ⎥
⎢13  21  5   11  19  9 ⎥
⎢                      ⎥
⎣14  1   8   26  7   15⎦

⎡6   0   23  16  28  27⎤
⎢                      ⎥
⎢12  24  28  10  16  27⎥
⎢                      ⎥
⎢10  26  8   12  5   18⎥
⎢                      ⎥
⎢7   18  10  14  28  9 ⎥
⎢                      ⎥
⎢8   13  23  9   3   21⎥
⎢                      ⎥
⎣19  19  5   5   14  26⎦

⎡11  13  15  22  22  19⎤
⎢                      ⎥
⎢10  21  6   20  28  10⎥
⎢                      ⎥
⎢0   27  24  7   11  27⎥
⎢                      ⎥
⎢18  25  3   8   16  10⎥
⎢                      ⎥
⎢5   3   3   20  18  4 ⎥
⎢                      ⎥
⎣24  1   20  12  2   7 ⎦

⎡8 ⎤
⎢  ⎥
⎢15⎥
⎢  ⎥
⎢13⎥
⎢  ⎥
⎢6 ⎥
⎢  ⎥
⎢28⎥
⎢  ⎥
⎣21⎦
THE FLAG IS SHA TWO FIVE SIX OF LESTER.HILL.WOULD.BE.PROUD.OR.NOT REMEMBER NO NEWLINE, SUBMIT IN NORMAL FORMAT....

Share this post